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Abstract
Computer simulation methods represent a complementary approach to
experimental and theoretical studies, and they have become invaluable tools for
the description of many-particle systems in numerous disciplines of science.
One of the main and widely applied approaches is the molecular dynamics
simulation, which makes it possible to trace the phase-space trajectories of
particles thereby providing information about the time evolution of the systems
investigated. From the phase-space coordinates of the particles, it is possible
to derive static, thermodynamic as well as transport properties and to obtain
information about the collective excitations.

PACS numbers: 52.27.Gr, 52.27.Lw, 52.65.Yy

1. Introduction

Strongly coupled plasmas (SCPs)—in which the average potential energy per particle
dominates over the average kinetic energy—appear in a number of physical systems: dusty
plasmas, charged particles in cryogenic traps, condensed matter systems such as molten salts
and liquid metals, electrons trapped on the surface of liquid helium, astrophysical systems,
such as the ion liquids in white dwarf interiors, neutron star crusts, supernova cores and giant
planetary interiors, as well as degenerate electron or hole liquids in two-dimensional or layered
semiconductor nanostructures. These systems and a wide variety of phenomena taking place
in them have been covered by the Strongly Coupled Coulomb Systems conference series [1].

This paper intends (i) to review the utilization of molecular dynamics (MD) simulations
in the determination of prominent characteristics of some types of SCPs and (ii) to discuss
some open problems of the field. It is of course impossible to consider here all types of
SCPs, which can be divided into several categories according to their chief characteristics:
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their composition, spatial dimensionality, spatial extent and configuration, and classical versus
quantum behavior.

Regarding their composition, SCPs may consist of a single or multiple types of charged
species. As an example of a single-component system, the layer of electrons on the surface
of liquid helium [2, 3] may be mentioned. Neutron star crusts are composed of fully stripped
iron ions; in the core of Jovian planets we find a binary mixture of H+ and He2+ ions [4],
while the core of white dwarf stars consists of a mixture of fully stripped ions of C, N and O
[5]. In these systems, electrons are present as a neutralizing background. Dusty plasmas, in
addition to electrons and ions, contain mesoscopic dust grains, which charge up and respond
to electromagnetic fields [6].

Regarding dimensionality and spatial extent, the above-mentioned astrophysical objects
are usually modeled as infinite three-dimensional (3D) systems. In laboratory studies, two-
dimensional (2D) and one-dimensional (1D) settings (e.g. of charged grains levitated in low
pressure gas discharges) have also been extensively studied. Multiple layered configurations
can be realized in semiconductor heterostructure devices [7], ion traps [8] and dusty plasma
experiments using two different sized grains [9]. Finite 3D and 2D clusters of charged grains
have also been realized in gaseous discharges and attract considerable attention lately; see,
e.g., [10].

Here we restrict our studies to classical systems which can be described within the
framework of the one-component plasma (OCP) model, in which only one of the components
of the plasma is considered explicitly, while the presence and effects of other types of species
are accounted for by the interparticle potential. In the OCP model, for Coulomb and Yukawa
plasmas, respectively, the potentials

φ(r) = Q

4πε0

1

r
(1)

and

φ(r) = Q

4πε0

exp(−r/λD)

r
(2)

are applicable. Here, Q is the charge of the particles and λD is the Debye length.
The strength of the coupling (related to the ratio of the interparticle potential energy to

the kinetic energy per particle) is expressed by the coupling parameter:

� = Q2

4πε0

1

akBT
, (3)

where a is the Wigner–Seitz (WS) radius and T is the temperature. In the case of Yukawa
interaction, an additional essential parameter is the screening parameter:

κ = a

λD
. (4)

The strong coupling regime corresponds to � > 1. In the κ → 0 limit the interaction
reduces to the Coulomb type, while at κ → ∞ it approximates the properties of hard spheres.

SCPs, seen as many-particle systems, can be treated theoretically in a straightforward way
in the limits of both weak interaction and very strong interaction. In the first case, one is faced
with a gaseous system, where correlation effects can be treated perturbatively. In the case of
very strong interaction, the system crystallizes and phonons are the principal excitations. In
the intermediate regime—in the strongly coupled liquid phase [11]—the localization of the
particles in the local minima of the potential surface still prevails; however, due to the diffusion
of the particles, the time of localization is finite [12]. The strongly coupled liquid phase is the
very domain where computer simulations have proven to be invaluable tools. Among the fields
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of theory, experiment and simulations, the latter has experienced the most dramatic advance
of resources during the past few decades. In the pioneering studies of the 1960s and 1970s,
systems consisting of few hundred particles were possible to simulate. Recently, simulations
of ∼103–106 particles (depending on the type of potential) can be considered as standards; the
largest supercomputers allow this number to grow to ∼109 [13]. With the rapid development
of computational tools, an even more extensive use of simulation techniques is expected in the
future.

The paper is organized as follows. Section 2 gives a brief description of the MD simulation
technique. In sections 3–5 representative examples of results obtained by MD simulations are
presented, respectively, for static properties, collective excitations and transport properties of
SCPs. The summary is given in section 6.

2. Molecular dynamics simulations

Molecular dynamics simulations follow the motion of particles by integrating their equations
of motion while accounting for the pairwise interaction of the particles, as well as for the forces
originating from any external field(s); see, e.g., [14]. The ‘core’ of the MD codes describes the
time evolution of phase-space trajectories of the ensemble of particles, while ‘measurements’
implemented in the code provide information (from the phase-space coordinates) about the
quantities of interest: about density and current oscillations, transport coefficients, as well as
the pair correlation function, which gives insight into the structure of the systems and is the
basis of the calculation of thermodynamic quantities.

The studies presented here concern ‘idealized’ Coulomb and Yukawa systems, in which
the Newtonian equation of motion was assumed to hold. In other words, the friction and
random forces originating from the plasma/gas background environment (see e.g. [15]) were
not taken into account. Also, all the examples in this paper are given for unconfined systems,
for which no external potential is applied and periodic boundary conditions are used.

The calculation of the force acting on a particle of the system is relatively simple in the case
of short-range potentials (e.g. Yukawa potential with high κ); in this case, MD methods make
use of the truncation of the interaction potential thereby limiting the need for the summation
of pairwise interactions around a test particle to a region of a finite size.

In the case of long-range interactions (e.g. Coulomb or low-κ Yukawa potentials), however,
such truncation is not allowed, and the periodic images of the system in all principal directions
have to be taken into account in the calculation of the interaction forces (see figure 1). In
the case of Coulomb interaction, in particular, the summation needs to be extended to infinity
in all directions. Convergence problems may be overcome by using special techniques, such
as Ewald summation [16], the fast multipole method or the particle–particle particle-mesh
(PPPM or P3M) method [17, 18].

In the Ewald summation method [16], the interaction potential is split into two parts, one
of which converges rapidly in real space and the other converges rapidly in the Fourier space.
This method has been used, e.g., in the calculation of transport coefficients of Yukawa liquids
[19] and in simulations of bilayer systems [20].

The PPPM method introduced by Eastwood, Hockney and Lawrence [17] also uses a
partitioning of the interaction into (i) a force component that can be calculated on a mesh
(the ‘mesh force’) and (ii) a short-range (‘correction’) force which is to be applied to closely
separated pairs of particles only. In the mesh part of the calculation, charge clouds are used
instead of pointlike charges. The charge density distribution is assigned to a grid and is Fourier
transformed to the k-space. Mutiplying ρ(k) with an optimized Green function results in a
potential distribution φ(k) = G(k)ρ(k), which is subsequently transformed back to real
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Figure 1. Molecular dynamics simulation using periodic boundary conditions in the case of short-
range (a) and long-range (b) potentials. This illustration is for two dimensions. The shaded region
is the primary simulation box. In (a), the circle shows the cutoff radius; the particles (one of them
is denoted by j ) interacting with the white test particle i have to be searched for inside this domain.
In the case of long-range potentials (b) interaction with the particles situated in the periodic images
of the primary box (up to infinity in all principal directions) must be taken into account. The
correction force (see text) is to be applied to closely separated pairs located within a circle.

space. The forces acting on the particles are obtained by differentiation of the potential and
interpolating the electric field to the positions of the particles. The cloud shape is chosen in a
way to ensure that ρ(k) is band-limited. (This would not be the case with pointlike charges.)
The calculation of the potential in the Fourier space automatically takes into account the
periodic images of the primary computational cell. For closely separated particles a correction
force is to be applied, which is the difference between the forces between two pointlike charges
and two charges with the cloud shape used. For more details, see [17].

In our molecular dynamics simulation studies of strongly coupled Coulomb systems we
have used the PPPM method, while in the studies of Yukawa systems we have applied the
summation of the interaction forces within a finite cutoff radius, the value of which depended
on the screening parameter.

3. Static properties and phase transitions

In three dimensions at κ = 0, the liquid phase is limited to coupling parameter values � � 175
[21]. A first-order phase transition was identified to take place at � ∼= 175, where the plasma
is known to crystallize into a bcc lattice [22]. We note that at κ > 0, the 3D systems may
crystallize either in a bcc or in a fcc lattice, depending on the value of κ [23].

At high values of the coupling coefficient, liquid-phase plasmas exhibit strong structural
correlations. Such correlations can easily be studied by examining the pair correlation
function (PCF, g(r)), which also serves as the basis of the calculation of the thermodynamic
characteristics of the systems; see, e.g., [24]. Figure 2 shows pair correlation functions for
the 3D Coulomb OCP for a series of � values. At high �, we observe very strong correlation
in the particle separations corresponding to those of a bcc lattice. With decreasing � the
peak amplitudes of g(r) decrease, but the positions of the peaks remain nearly unchanged.
This remarkable feature of the PCFs indicates that the local environment of the particles
in the liquid phase still resembles the underlying (� → ∞) lattice configuration. At high
� values, the strong correlation arises from the prominent quasilocalization of the particles
in the local minima of the potential surface. It has been shown by simulations [12] that
the period of localization typically covers several plasma oscillation cycles before particle
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Figure 2. Pair correlation functions of the classical 3D Coulomb OCP, for different values of the
coupling parameter �. The distance is normalized by the WS radius.

migration rearranges the potential surface. This ‘caging’ behavior, appearing at high values
of �, determines many of the systems’ properties [25].

Regarding systems with lower dimensionality (D < 3) it has been theoretically shown
that exact long-range order cannot survive at finite temperatures T > 0, for a potential with
κ > 0 [26]. Thus, infinite (Yukawa) single crystals do not exist in 2D. Nonetheless, crystal-like
and fluid-like behavior have been observed in 2D systems and pronounced changes of certain
characteristics (e.g. bond angular order parameter) have been detected in the transition region
between these two ‘phases’; see, e.g., [27]. In many papers on 2D systems (most frequently,
2D dusty plasma configurations), the words ‘phase’ and ‘phase transition’ have been routinely
used. One should, however, be aware of the above-mentioned arguments against the existence
of true long-range order and real phase transitions taking place in low dimensional Yukawa
systems.

In two dimensions, crystallization of a Coulomb system into a hexagonal lattice was found
to occur at a coupling � ≈ 137, as indicated by both experiments [2] and computer simulations
[28]. Theoretical (see e.g. [29, 30]) and numerical studies of the ‘melting transition’ in 2D
systems indicate the appearance of two melting stages. According to this theory, as the system
is heated it first transforms from a solid into a ‘hexatic’ phase, where the quasi-long-range
positional order is suppressed, but the orientational order still survives. At somewhat higher
temperatures, the orientational order also disappears and the system enters the liquid phase.
This issue of the number of distinct phases in 2D Coulomb or Yukawa systems has been, for
some time, a matter of intense controversy [31]. As an example of studies where two-stage
melting was found to occur, [32] may be mentioned. The increasing interest in finite (classical
and quantum) systems (sometimes consisting of a few particles only) has motivated studies of
the transition between solid-like and liquid-like phases [33].

4. Collective excitations

Collective excitations (waves) are prominent features of plasmas. Depending on the
dimensionality and the confinement of the system, different collective excitations (longitudinal
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and transverse modes) appear. The spectrum of density fluctuations (the dynamical structure
function) is calculated as [34]

S(k, ω) = 1

2πN

∫ ∞

−∞
eiωt 〈ρ(k, t)ρ(−k, 0)〉 dt

= 1

2πN
lim


T →∞
1


T
|ρ(k, ω)|2, (5)

where N is the number of particles and ρ(k, ω) is the Fourier transform of the microscopic
density:

ρ(k, t) =
∑

j

exp[ikxj (t)]. (6)

The (1/
T ) factor in (5) enters because in the calculation of the 〈ρ(k, t)ρ(−k, 0)〉
autocorrelation function, the ensemble average is replaced by the time average (assuming
ergodicity)

〈ρ(k, t)ρ(−k, 0)〉 = 1


T
lim


T →∞

∫ 
T

0
ρ(k, t + t ′)ρ(−k, t ′) dt ′. (7)

Similarly, the spectra of the longitudinal and transverse current fluctuations, L(k, ω) and
T (k, ω), respectively, can be obtained from the Fourier analysis of the microscopic quantities:

λ(k, t) = k
∑

j

vjx(t) exp[ikxj (t)], (8)

τ(k, t) = k
∑

j

vjy(t) exp[ikxj (t)], (9)

where xj and vj are the position and velocity of the j th particle, respectively. Here, we
assume that k is directed along the x-axis (the system is isotropic) and accordingly omit the
vector notation of the wave number. The above-described way for the derivation of the spectra
provides information for a series of wave numbers, which are multiples of kmin = 2π/H ,
where H is the edge length of the simulation box.

Longitudinal modes can fully be characterized by the dynamical structure function
S(k, ω), while transverse modes can be studied through the analysis of the transverse current
fluctuation spectra T (k, ω). The corresponding current fluctuation spectra for the longitudinal
mode, L(k, ω), are linked with the dynamical structure function. Collective excitations are
identified as peaks in these MD-generated spectra, and dispersion relations are derived by
observing the change of the frequency (where the peaks are found) with the wave number.
Additionally, the widths of the peaks in the spectra convey information about the lifetime of
excitations (associated with the damping of the waves), as well as about the distribution of the
mode frequencies due to the disordered particle configuration in the liquid phase.

Molecular dynamics simulations have been used in studies of collective excitations in
Coulomb [34] and Yukawa [35, 36] plasma liquids. In the following, as an example, we
present MD simulation results for the collective excitations in 3D Coulomb and Yukawa
liquids, and compare these with the predictions of the quasilocalized charge approximation
(QLCA) theory.

Longitudinal (L(k, ω)) and transverse (T (k, ω)) current fluctuation spectra are plotted in
figure 3 for wave numbers, which are multiples of kmin = kmina = 0.167. L(k, ω) obtained for
the Coulomb case (� = 160, κ = 0) peaks very nearly at the plasma frequency ω0. In the case
of the Yukawa potential, as shown in figure 3(b), the behavior of L(k, ω) changes significantly:
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(a) (b)

(c) (d )

Figure 3. Longitudinal current fluctuation spectra in a 3D Coulomb OCP at � = 160 (a) and in a
Yukawa OCP at � = 200, κ = 1 (b). Transverse current fluctuation spectra for the same parameter
values (c), (d). k̄ = ka denotes the dimensionless wave number; its values are given in (b). In (a),
(c), (d), the arrows indicate increasing values of k̄. The number of particles in the simulation: N =
12 800. Partly reproduced from [11] (copyright (2008) by IOP Publishing).

at k̄ → 0 the wave frequency ω → 0. The contrast between the κ = 0 and the κ > 0 cases is
also well seen in figure 4, where the dispersion curves derived from the fluctuation spectra are
displayed. The (�, κ) pairs for which the dispersion graphs are plotted in figure 4 have been
selected to represent a constant ‘effective’ coupling �∗ = 160. This definition of �∗ relies on
the constancy of the first peak amplitude of the pair correlation function g(r̄), similar to the
case of 2D Yukawa liquids [37].

Compared to those characterizing the L mode, peaks in the T mode spectra are rather
broad, as can be seen in figures 3(c) and (d), for the Coulomb and Yukawa cases, respectively.
In the case of this mode, there is no significant change between the behavior when κ changes
from a zero to a nonzero value; only the mode frequency decreases, as can also be observed
in figure 4(b).

A comparison of the dispersion relations obtained from the MD and those from the
QLCA theory [11, 38] is presented in figure 4. The agreement between the dispersion curves
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(a) (b)

Figure 4. Dispersion relations for the (a) longitudinal and (b) transverse modes of 3D Coulomb and
Yukawa plasma liquids. Symbols represent molecular dynamics results, while the lines correspond
to the predictions of the QLCA theory. The (�, κ) pairs are given in the legend of panel (b).
Reproduced from [11] (copyright (2008) by IOP Publishing).

is excellent for the L mode, while some differences in the frequency of the T waves can be
seen in figure 4(b). This latter may originate from the less accurate determination of the peak
positions of the rather spread T (k, ω) spectra. Another difference is the cutoff of the T mode
dispersion curve at finite wave numbers. This disappearance of the shear modes for k → 0 is
a well-known feature of the liquid state [34, 39]. It is noted that this cutoff is not accounted
for by the QLCA, as it does not include damping effects.

5. Transport properties

Molecular dynamics simulations offer two basic ways to study transport processes. In non-
equilibrium simulation methods, an external perturbation is applied to the system and the
system’s response (linked to the perturbation through a transport coefficient) is measured.
In equilibrium simulations, time correlation functions of certain microscopic quantities are
measured and macroscopic transport coefficients are obtained through the Green–Kubo (GK)
relations.

Here, we first review the data available for the transport coefficients of strongly coupled 3D
Coulomb and Yukawa OCP. Subsequently, we discuss the transport properties of 2D systems.

5.1. Self-diffusion

The self-diffusion coefficient of the Coulomb OCP as a function of � (normalized as
D∗ = D/a2ω0) is displayed in figure 5. Hansen et al [34] made use of the GK relation
to obtain the self-diffusion coefficient of the Coulomb OCP; their results were found to
follow the approximate relation D∗ = 2.95�−1.34. Ohta and Hamaguchi [40] obtained
the self-diffusion coefficient for Yukawa liquids over a wide domain of the coupling (�)
and screening (κ) parameters from MD simulations using the mean squared displacement
D = limt→∞ 1

6t
〈|ri (t) − ri (0)|2〉. Their results for κ = 0.1 as well as our present data (based

on the same computational procedure) obtained for κ = 0 are also shown in figure 5. These
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Figure 5. Self-diffusion coefficient of the 3D OCP. Hansen et al: [34], OH: Ohta and Hamaguchi
[40], DKG: Donkó, Kalman and Golden, calculated from cage correlation functions [12]. The
self-diffusion coefficient has been normalized as D∗ = D/a2ω0. All data correspond to κ = 0,
except OH, which is for κ = 0.1.

more recent MD data fall very close to those given by the above formula. An additional set
of data derived on the basis of the caged behavior and jumping of the particles in the strongly
coupled liquid phase [12] is also shown in figure 5. This data set agrees quite well with the
results of the ‘direct’ MD calculations.

5.2. Shear viscosity

Shear viscosity data for the 3D OCP (normalized as η∗ = η/mna2ω0) are shown in
figure 6. The first data originate from the work of Vieillefosse and Hansen [41]. They
have found that η exhibits a minimum at � ≈ 20. The calculations of Wallenborn and Baus
[42, 43] were based on the kinetic theory; their results were in reasonable agreement with the
previous results of [41]. The minimum value of η agreed well for both reports; however, the
position of the minimum was reported in [42] to occur at a lower coupling value, � ≈ 8. MD
simulation was first applied by Bernu et al [44, 45] to obtain transport parameters through
the GK relations. Donkó and Nyı́ri [46] used a non-equilibrium MD simulation technique to
determine the shear viscosity, while subsequently, Bastea [47] applied equilibrium simulation
and obtained η from the GK relation. Daligault [25] has found that the shear viscosity of the
OCP follows an Arrhenius-type behavior at high � values. Salin and Caillol [19] have carried
out equilibrium MD computations for the shear and bulk viscosity coefficients, as well as for
the thermal conductivity of the Yukawa OCP. They have implemented Ewald sums for the
potentials, the forces and the currents which enter the GK formulae. Saigo and Hamaguchi
[48] have also used the GK relations for the calculations of η. A critical review of the shear
viscosity calculations of 3D Yukawa liquids and simulations with improved accuracy using
two independent nonequilibrium MD methods has been presented in [49].

5.3. Thermal conductivity

Thermal conductivity data for the 3D OCP (normalized as: λ∗ = λ/nkBa2ω0) are shown
in figure 7. Bernu et al [44, 45] used the GK relations in conjunction with an equilibrium
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DN (N = 1024)
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VH

BV

B

D

SC (κ=0.01)

SH (κ=0.1)

η*

Γ

Figure 6. Shear viscosity coefficient of the 3D OCP. DN: Donkó and Nyı́ri [46] using 1024
and 8192 particles, WB: Wallenborn and Baus [42, 43], VH: Vieillefosse and Hansen [41], BV:
Bernu et al [44, 45], B: Bastea [47], D: Daligault [25], SC: Salin and Caillol [19], SH: Saigo
and Hamaguchi [48]. (The results of [25] have been scaled to match the minimum value of η.)
Reproduced from [49] (copyright (2008) by the American Physical Society).

1 10 100
0.00

0.50

1.00

1.50

2.00
BVH

DN 8192 (κ = 0)

DN 1024 (κ = 0)

SC (κ = 0.01)

FM (κ = 0)

DH 6400 (κ = 0.1)

DH 1600 (κ = 0.1)

λ*

Γ

Figure 7. Thermal conductivity coefficient of the 3D OCP. BVH: Bernu et al [44, 45], DN: Donkó
and Nyı́ri [46] using 1024 and 8192 particles, SC: Salin and Caillol [19], DH: Donkó and Hartmann
[51].

MD simulation to derive λ, while a non-equilibrium MD technique was used in [46, 50]: a
perturbation to the system and λ∗ was deduced from the relaxation time of the system toward
the equilibrium state. Donkó and Hartmann [51] applied the non-equilibrium MD method of
[52] to calculate the thermal conductivity of Yukawa liquids. Faussurier and Murillo obtained
thermal conductivity (as well as self-diffusion and shear viscosity) values for the Yukawa
OCP through its mapping with the Coulomb OCP system, based on the Gibbs–Bogolyubov
inequality [53].
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Figure 8. Velocity autocorrelation functions of 2D and 3D Yukawa liquids for the � and κ values
indicated. The thick lines indicate power-law decays.

We note that the effect of the plasma environment in dusty plasmas has been taken
into account in the calculation of transport coefficients of Yukawa systems through Langevin
dynamics in several works; see, e.g., [54, 55].

5.4. Transport in two-dimensional systems

The calculation of the transport coefficients through the GK formulae assumes that the
integrands appearing in them are integrable. Several previous studies have, on the other
hand, demonstrated that this is not always the case. Non-exponential long-time tails in the
velocity autocorrelation function (VACF) of hard sphere and hard disk systems were first
reported in [56]. For the 2D (hard disk) system, the observed t−1 decay of the VACF evidently
precludes the use of the GK relation to compute D. (For 3D, a t−3/2 decay was predicted in
[56].) Ever since this observation, the existence of transport coefficients in 2D systems has
been a topic of controversy. For 2D systems, a t−1 long-time decay (similar to that of the
VACF) was predicted by theory [57] also both for the stress autocorrelation function (SACF)
and the energy current autocorrelation function (EACF). 2D soft disk fluid simulations have
confirmed the t−1 tail of the SACF [58]. For certain conditions, superdiffusion was also
observed in 2D Yukawa systems [59]. A transition between superdiffusion and ‘normal’
diffusion has been found to take place as controlled by the thickness of a quasi-2D layer in a
simulation of a system confined in one direction [60].

Figure 8 presents VACFs obtained from MD simulations of 2D and 3D Yukawa liquids, for
different values of �. At high coupling (� = 200), the curves exhibit initial oscillations due
to caged particle oscillations; subsequently, we observe a part with smooth decay. Since the
curves are presented using log–log scales, a straight line corresponds to a power-law decay.
The meaningful length of data is limited by the finite size of the simulation box; following
the smoothly decaying parts of the curves as spurious features, we observe peaks (the first
of them labeled as ‘S’ in the graphs) originating from the traverse of sound waves through
the simulation boxes. At high coupling, in the case of a 2D system we observe a closely
t−1 long-time decay of the VACF and a closely t−3/2 decay in the case of 3D. The t−1 decay
suggests that the VACF is non-integrable and consequently the diffusion coefficient does not
exist. At the lower value of coupling the VACFs decay faster, allowing for a meaningful
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D to exist even in 2D. Clarification of the behavior of the shear stress and energy current
autocorrelation functions of 2D Yukawa systems is a topic of current work [61].

6. Summary

This paper intended to illustrate the application of molecular dynamics simulations in the
exploration of the physics of strongly coupled plasmas. After having discussed the basic
characteristics of SCPs and the essentials of the molecular dynamics simulations, MD results
have been shown for the structural and dynamical characteristics as well as for transport
coefficients of 3D Coulomb and Yukawa systems. Issues related to the existence of phases
and transport coefficients in 2D systems have been discussed. Clarification of some of these
issues requires a significant increase of computer power; these large-scale simulations remain
for future work.
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[61] Donkó Z, Goree J, Hartmann P and Liu B 2008 in preparation

13

http://dx.doi.org/10.1146/annurev.biophys.28.1.155
http://dx.doi.org/10.1103/PhysRevLett.88.065002
http://dx.doi.org/10.1063/1.1566749
http://dx.doi.org/10.1103/PhysRevE.63.056703
http://dx.doi.org/10.1103/PhysRevE.47.4330
http://dx.doi.org/10.1103/PhysRevA.41.1105
http://dx.doi.org/10.1103/PhysRevE.56.4671
http://dx.doi.org/10.1103/PhysRevLett.96.065003
http://dx.doi.org/10.1103/PhysRev.158.383
http://dx.doi.org/10.1103/PhysRev.176.250
http://dx.doi.org/10.1109/TPS.2007.894438
http://dx.doi.org/10.1103/PhysRevB.20.326
http://dx.doi.org/10.1103/PhysRevLett.41.121
http://dx.doi.org/10.1088/0022-3719/6/7/010
http://dx.doi.org/10.1103/PhysRevLett.48.933
http://dx.doi.org/10.1103/PhysRevLett.53.2133
http://dx.doi.org/10.1103/RevModPhys.60.161
http://dx.doi.org/10.1103/PhysRevB.45.2694
http://dx.doi.org/10.1103/PhysRevB.51.8789
http://dx.doi.org/10.1143/JPSJ.75.123501
http://dx.doi.org/10.1103/PhysRevLett.100.113401
http://dx.doi.org/10.1103/PhysRevA.11.1025
http://dx.doi.org/10.1103/PhysRevLett.84.6026
http://dx.doi.org/10.1051/jp4:2000503
http://dx.doi.org/10.1103/PhysRevE.72.026409
http://dx.doi.org/10.1103/PhysRevLett.84.6030
http://dx.doi.org/10.1103/PhysRevA.22.1220
http://dx.doi.org/10.1103/PhysRevE.56.7310
http://dx.doi.org/10.1103/PhysRevLett.85.2514
http://dx.doi.org/10.1063/1.1316084
http://dx.doi.org/10.1103/PhysRevA.12.1106
http://dx.doi.org/10.1103/PhysRevA.18.1737
http://dx.doi.org/10.1103/PhysRevA.18.2345
http://dx.doi.org/10.1063/1.873824
http://dx.doi.org/10.1103/PhysRevE.71.056405
http://dx.doi.org/10.1103/PhysRevLett.81.1622
http://dx.doi.org/10.1103/PhysRevE.69.016405
http://dx.doi.org/10.1063/1.473271
http://dx.doi.org/10.1103/PhysRevE.67.046404
http://dx.doi.org/10.1063/1.1449888
http://dx.doi.org/10.1134/S1063780X07060062
http://dx.doi.org/10.1103/PhysRevA.1.18
http://dx.doi.org/10.1103/PhysRevLett.25.1254
http://dx.doi.org/10.1103/PhysRevA.32.2425
http://dx.doi.org/10.1103/PhysRevE.75.016405
http://dx.doi.org/10.1103/PhysRevLett.100.055003
http://dx.doi.org/10.1103/PhysRevE.78.026409

	1. Introduction
	2. Molecular dynamics simulations
	3. Static properties and phase transitions
	4. Collective excitations
	5. Transport properties
	5.1. Self-diffusion
	5.2. Shear viscosity
	5.3. Thermal conductivity
	5.4. Transport in two-dimensional systems

	6. Summary
	Acknowledgments
	References

